Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Anesthesiol ; 24(1): 101, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493108

RESUMO

BACKGROUND: Deep neuromuscular block (NMB) has been shown to improve surgical conditions and alleviate post-operative pain in bariatric surgery compared with moderate NMB. We hypothesized that deep NMB could also improve the quality of early recovery after laparoscopic sleeve gastrectomy (LSG). METHODS: Eighty patients were randomized to receive either deep (post-tetanic count 1-3) or moderate (train-of-four count 1-3) NMB. The QoR-15 questionnaire was used to evaluate the quality of early recovery at 1 day before surgery (T0), 24 and 48 h after surgery (T2, T3). Additionally, we recorded diaphragm excursion (DE), postoperative pain, surgical condition, cumulative dose of analgesics, time of first flatus and ambulation, post-operative nausea and vomiting, time of tracheal tube removal and hospitalization time. MAIN RESULTS: The quality of recovery was significantly better 24 h after surgery in patients who received a deep versus moderate block (114.4 ± 12.9 versus 102.1 ± 18.1). Diaphragm excursion was significantly greater in the deep NMB group when patients performed maximal inspiration at T2 and T3 (P < 0.05). Patients who underwent deep NMB reported lower visceral pain scores 40 min after surgery; additionally, these patients experienced lower pain during movement at T3 (P < 0.05). Optimal surgical conditions were rated in 87.5% and 64.6% of all measurements during deep and moderate NMB respectively (P < 0.001). The time to tracheal tube removal was significantly longer in the deep NMB group (P = 0.001). There were no differences in other outcomes. CONCLUSION: In obese patients receiving deep NMB during LSG, we observed improved QoR-15 scores, greater diaphragmatic excursions, improved surgical conditions, and visceral pain scores were lower. More evidence is needed to determine the effects of deep NMB on these outcomes. TRIAL REGISTRATION: ChiCTR2200065919. Date of retrospectively registered: 18/11/2022.


Assuntos
Laparoscopia , Bloqueio Neuromuscular , Doenças Neuromusculares , Dor Visceral , Humanos , Obesidade , Dor Pós-Operatória/tratamento farmacológico , Gastrectomia
2.
Front Biosci (Landmark Ed) ; 28(2): 35, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36866545

RESUMO

Neuropathic pain is a chronic secondary pain condition resulting from lesions or diseases of the peripheral or central nervous system (CNS). Neuropathic pain is closely related to edema, inflammation, increased neuronal excitability, and central sensitization caused by glutamate accumulation. Aquaporins (AQPs), mainly responsible for the transport and clearance of water and solute, play important roles in developing CNS diseases, especially neuropathic pain. This review focuses on the interaction of AQPs with neuropathic pain, and the potential of AQPs, especially aquaporins 4, as therapeutic targets.


Assuntos
Aquaporinas , Neuralgia , Humanos , Sistema Nervoso Central , Glutamatos , Inflamação
3.
Front Neurosci ; 16: 926128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898407

RESUMO

Waste removal is essential for maintaining homeostasis and the normal function of the central nervous system (CNS). The glymphatic system based on aquaporin-4 (AQP4) water channels on the endfeet of astrocytes is recently discovered as the excretion pathway for metabolic waste products of CNS. In the CNS, α-syntrophin (SNTA1) directly or indirectly anchors AQP4 in astrocyte membranes facing blood vessels. Studies have indicated that ß-hydroxybutyrate (BHB) can raise the expression of SNTA1 and thus restoring AQP4 polarity in mice models with Alzheimer's disease. The study aims to evaluate the neuroprotective mechanism of BHB in rats with painful diabetic neuropathy (PDN). PDN rats were modeled under a high-fat and high-glucose diet with a low dose of streptozotocin. Magnetic resonance imaging (MRI) was applied to observe the clearance of contrast to indicate the functional variability of the spinal glymphatic system. Mechanical allodynia was assessed by paw withdrawal threshold. The expressions of SNTA1 and AQP4 were tested, and the polarity reversal of AQP4 protein was measured. As demonstrated, PDN rats were manifested with deceased contrast clearance of the spinal glymphatic system, enhanced mechanical allodynia, lower expression of SNTA1, higher expression of AQP4, and reversed polarity of AQP4 protein. An opposite change in the above characteristics was observed in rats being treated with BHB. This is the first study that demonstrated the neuroprotective mechanism of BHB to attenuate PDN via restoration of the AQP4 polarity in the spinal glymphatic system and provides a promising therapeutic strategy for PDN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...